Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 31, 2026
-
It is vital that the next generation of public health practitioners understand the importance of ensuring affordable and equitable access to safe drinking water for all communities, and the interconnected roles that scientific research, public policy, community engagement, and advocacy play in ensuring this. Here, we describe the Water Tool, a website where student-users develop an exploratory and customizable journey through data on drinking water suppliers’ compliance with regulations, watershed pollution, and environmental justice:https://eew-sdwa-nj.streamlit.app/In the course we built alongside a New Jersey-specific version of the Water Tool, students complete three in-class assignments and a final project. They first use it to answer a basic set of questions such as, how many public water systems are there in the state? Students then find their own water provider through an interactive map and describe the provider’s source water and number of persons served. Next, they use the tool to investigate socioeconomic, biophysical, and public health indicators of environmental inequity in their area. In the final project, students reflect on the meaning of the information they compiled and how to communicate it. Through hands-on engagement with data and structured opportunities for reflection, the Water Tool enables students to learn both about how drinking water is regulated and how to assess information on drinking water quality for specific water systems. Although we designed the tool and assignments specifically with New Jersey in mind, it could be reconfigured for use in other states or more local contexts.more » « less
-
Abstract Climate change is increasing the intensity and frequency of extreme heat events. Ecological responses to extreme heat will depend on vegetation physiology and thermal tolerance. Here we report thatLarix sibirica, a foundation species across boreal Eurasia, is vulnerable to extreme heat at its southern range margin due to its low thermal tolerance (Tcritof photosynthesis: ~ 37–48 °C). Projections from CMIP6 Earth System Models (ESMs) suggest that leaf temperatures might exceed the 25thpercentile ofLarix sibirica’s Tcritby two to three days per year within the next two to three decades (by 2050) under high emission scenarios (SSP3-7.0 and SSP5-8.5). This degree of warming will threaten the biome’s continued ability to assimilate and sequester carbon. This work highlights that under high emission trajectories we may approach an abrupt ecological tipping point in southern boreal Eurasian forests substantially sooner than ESM estimates that do not consider plant thermal tolerance traits.more » « less
-
Cernusak, Lucas (Ed.)Abstract Recent climate extremes in Mongolia have ignited a renewed interest in understanding past climate variability over centennial and longer time scales across north-central Asia. Tree-ring width records have been extensively studied in Mongolia as proxies for climate reconstruction, however, the climate and environmental signals of tree-ring stable isotopes from this region need to be further explored. Here, we evaluated a 182-year record of tree-ring δ13C and δ18O from Siberian Pine (Pinus sibirica Du Tour) from a xeric site in central Mongolia (Khorgo Lava) to elucidate the environmental factors modulating these parameters. First, we analyzed the climate sensitivity of tree-ring δ13C and δ18O at Khorgo Lava for comparison with ring-width records, which have been instrumental in reconstructing hydroclimate in central Mongolia over two millennia. We also compared stable isotope records of trees with partial cambial dieback (‘strip-bark morphology’), a feature of long-lived conifers growing on resource-limited sites, and trees with a full cambium (‘whole-bark morphology’), to assess the inferred leaf-level physiological behavior of these trees. We found that interannual variability in tree-ring δ13C and δ18O reflected summer hydroclimatic variability, and captured recent, extreme drought conditions, thereby complementing ring-width records. The tree-ring δ18O records also had a spring temperature signal and thus expanded the window of climate information recorded by these trees. Over longer time scales, strip-bark trees had an increasing trend in ring-widths, δ13C (and intrinsic water-use efficiency, iWUE) and δ18O, relative to whole-bark trees. Our results suggest that increases in iWUE at this site might be related to a combination of leaf-level physiological responses to increasing atmospheric CO2, recent drought, and stem morphological changes. Our study underscores the potential of stable isotopes for broadening our understanding of past climate in north-central Asia. However, further studies are needed to understand how stem morphological changes might impact stable isotopic trends.more » « less
An official website of the United States government
